26th Annual International Society for Environmental Epidemiology Conference – August 24-28th, 2014 - Seattle (WA), USA

Retrospective cohort study on health effects in the population residing around a waste Incinerator and other sources of pollution

Santoro M¹, Minichilli F¹, Linzalone N¹, Maurello MT², Sallese D², Bianchi F^{1,3}

¹ Unit of Environmental Epidemiology - Institute of Clinical Physiology, National Council of Research, Pisa, Italy

² Department of Prevention, AUSL 8, Arezzo, Italy

³ Fondazione Toscana Gabriele Monasterio, Pisa, Italy

INTRODUCTION

The epidemiological knowledge on the health effects of modern Waste Incinerators is still inconclusive. Despite the moderate concentrations of pollutants emitted, the long-term exposures could be a relevant issue for public health.

AIMS

The aim of the study is to evaluate the mortality and hospitalization risk due to emissions of a Waste Incinerator (WI) operating in Tuscany-Italy since 2000 in an area with other linear and point sources of pollution

METHODS

Concentration maps of PM10 and Cd (ADMS model) were used to estimate the exposure to WI and other sources (industrial plants and highway) in the area (Fig.1). Three exposure classes were defined using the 50th and 80th percentiles of the concentrations distribution (Fig.2). The distance was used to estimate the exposure to the main roads. Inhabitants in 2001-2010 were included in the cohort (Fig.3). Individual exposure history to each source was reconstructed considering movements inside and outside the area. A cohort of 50,871 individuals corresponding to 371,700 person years was analyzed. Nine causes of mortality and hospitalization were linked to the geo-coded cohort. Health data were selected by regional mortality and hospital discharge registries. Hazard Ratio (HR) with 95% CI and p-value of the highest class of exposure compared to the lowest one, adjusted for the other environmental exposures, age and socioeconomic status, was estimated by a Cox time-dependent model. Trend (TR) of HR was evaluated too.

Fig. 2 PM10 Concentration maps of WI by exposure classes and projection of inhabitants (in green)

Fig. 3 Conceptual scheme of the definition and characterization of the cohort

Fig. 1 Study area

RESULTS

Mortality

		Hi	ighest cla	ss of expos	ure	Trend					
Cause of death	Gender	Ν	HR	95% CI	p	TR p			Cause of hospitalization	Gender	
	F	235	0.932	0.77-1.13	0.468	0.960 <i>0.383</i>				F	ſ
All causes	Μ	281	1.133	0.94-1.36	0.178	1.102 0.014			Disorders of thyroid gland	Μ	
	Т	516	1.031	0.90-1.18	0.655	no trend				т	
	F	111	1.013	0.77-1.34	0.926	no trend				F	ſ
Diseases of circulatory system	Μ	104	1.199	0.89-1.61	0.231	1.146 0.036	MAIN RESULTS		Diseases of circulatory system	Μ	
	Т	215	1.101	0.90-1.35	0.355	1.066 0.149	• Overall mortality in males			Т	
	F	23	1.211	0.63-2.31	0.562	no trend	 Overall mortality in males 			F	
schemic hearth diseases	Μ	41	1.430	0.87-2.36	0.162	1.210 0.090	 Diseases of circulatory system in males 		Ischemic hearth diseases	Μ	
	Т	64	1.352	0.91-2.01	0.136	1.167 <i>0.113</i>	 Ischaemic hearth diseases in males 			Т	
	F	19	1.653	0.76-3.61	0.207	1.302 <i>0.098</i>	• Ischaemic nearth uiseases in males			F	
Diseases of respiratory system	M T	25	1.014	0.52-1.96	0.968	no trend	 Acute respiratory diseases in females 		Diseases of respiratory system	Μ	
	Г Г	44	1.244	0.75-2.06	0.397	1.116 0.378				<u> </u>	4
Acuto Despiratory diseases		11	2.536	0.84-7.68	0.100				Acute Respiratory diseases	F	
Acute Respiratory diseases	M T	8 10	1.094 1.687	0.34-3.50	0.879	no trend				M	
	Г Г	19 5	1.323	0.76-3.75	0.200	no trend					╢
Chronich Pulmonary diseases	г М	14	1.223	0.33-5.25 0.50-3.00	0.690 0.661	no trend no trend			Chucuich Deducerence discores		
	Т	19	1.244	0.59-2.64	0.568	no trend	MA	IN RESULTS	Chronich Pulmonary diseases	M	
Diseases of digestive system	F	 	0.137	0.03-0.74	0.020	0.555 0.031					╢
	M	10	1.072	0.41-2.82	0.888	no trend	 Diseases of circulatory system in both 		Asthma	г М	
	Т	14	0.552	0.25-1.22	0.142	0.756 <i>0.126</i>	genders, signi	ficant for males	Astima	Т	
Diseases of urinary system	F	4	1.340	0.29-6.09	0.705	no trend				F	┢
	M	3	0.338	0.07-1.60	0.172	0.656 0.149	 Diseases of uri 	nary system	Diseases of digestive system	M	
	т	7	0.638	0.22-1.84	0.405	no trend				_	

Hazard Ratio (HR) adjusted for age, socioeconomic status and other environmental exposures, with 95% CI and p value; Trend (TR) with p value, by cause and gender

Hospitalization

		H	Highest class of exposure				Trend	
Cause of hospitalization	Gender	N	HR	95% CI	p	TR	p	
	F	24	1.354	0.74-2.49	0.330	1.134	0.417	
Disorders of thyroid gland	Μ	8	1.107	0.36-3.37	0.859	no trend		
	т	32	1.270	0.74-2.17	0.381	1.115	0.416	
	F	314	1.122	0.95-1.33	0.186	1.052	0.221	
Diseases of circulatory system	Μ	418	1.228	1.06-1.43	0.007	1.103	0.009	
	т	732	1.181	1.06-1.32	0.004	1.080	0.006	
	F	59	1.057	0.70-1.59	0.788	no tr	end	
Ischemic hearth diseases	Μ	136	1.178	0.91-1.53	0.223	no tr	end	
	Т	195	1.148	0.92-1.43	0.222	no tr	end	
	F	143	1.020	0.79-1.31	0.878	1.008	0.892	
Diseases of respiratory system	Μ	205	0.940	0.76-1.16	0.565	0.966	0.509	
	Т	348	0.976	0.83-1.15	0.768	no tr	end	
	F	63	1.151	0.78-1.70	0.479	1.060	0.545	
Acute Respiratory diseases	Μ	76	0.753	0.53-1.08	0.120	0.870	0.110	
	Т	139	0.911	0.70-1.19	0.490	0.950	0.434	
	F	20	1.226	0.58-2.59	0.593	no trend		
Chronich Pulmonary diseases	Μ	31	0.955	0.53-1.74	0.879	no tr	end	
	Т	51	1.071	0.67-1.71	0.771	1.036	0.754	
	F	3	0.510	0.09-2.97	0.454	no tr	end	
Asthma	Μ	5	1.523	0.39-6.00	0.548	no trend no trend		
	Т	8	1.015	0.37-2.80	0.977			
	F	214	1.063	0.87-1.30	0.554	1.031	0.542	
Diseases of digestive system	M	250	0.958	0.80-1.15	0.652	0.981	0.676	
	T _	464	1.008	0.88-1.16	0.910	no tr		
	F	51	1.356	0.90-2.04	0.144	1.145	0.185	
Diseases of urinary system	M	65	1.150	0.79-1.68	0.472	no tr	end	

F = Female; M = Male; T= Total

T 116 1.244 0.94-1.64 0.124 1.134 0.063

Hazard Ratio (HR) adjusted for age, socioeconomic status and other environmental exposures, with 95% CI and p value; Trend (TR) with p value, by cause and gender F = Female; M = Male; T = Total

CONCLUSIONS

The study design, including the most relevant pollution sources, allowed to define an accurate estimation of the individual exposure. The results obtained, although not evidenced in both sexes, are useful in decision-making. The estimated risks for some diseases with limited evidence, as well as the effect of the overlap of the concentration maps of different emission sources deserve further investigation.

Contacts: Michele Santoro, michele.santoro@ifc.cnr.it Fabrizio Minichilli, fabrizio.minichilli@ifc.cnr.it